Academic Profile

Academic Profile

Assoc Prof Liu Yang

Associate Professor, School of Computer Science and Engineering

Phone: +65 67906706
Office: N4 02C 84
Assoc Prof Liu Yang

Dr. Yang Liu abtained his bachelar and ph.d degree in the National University of Singapore in 2005 and 2010, respectively. In 2012, he joined Nanyang Technological University as a Nanyang Assistant Professor. He is currently an associate professor, director of the cybersecurity lab, Program Director of HP-NTU Corporate Lab and Deputy Director of the National Satellite of Excellence of Singapore. In 2019, he received the University Leadership Forum Chair professorship at NTU.

Dr. Liu specializes in software verification, security and software engineering. His research has bridged the gap between the theory and practical usage of formal methods and program analysis to evaluate the design and implementation of software for high assurance and security. By now, he has more than 250 publications in top tier conferences and journals. He has received a number of prestigious awards including MSRA Fellowship, TRF Fellowship, Nanyang Assistant Professor, Tan Chin Tuan Fellowship, and 10 best paper awards and one most influence system award in top conferences like ASE, FSE and ICSE.
Research Interests
For cybersecurity, we are working at malware modeling, detection, classification and generation with the focus on Javascript malware, desktop malware and Android malware. We are developing tools for vulnerability modeling and detection using machine learning and (both static and dynamic) program analysis on binary code. In our Securify research project (2015 - 2020), we are performing formal verification on security system from hardware, hypervisor, programs to security protocol using different verification approaches. Recently, we embark on the research on Automotive Security and autonomous vehicle Security in their security design, runtime security monitoring and response, and also the security testing and certification.

For software engineering, we are working on the topics related to program specification learning and model learning, performance analysis, Android energy analysis, reliability analysis, code clone analysis, program debugging, program testing, automatic loop analysis, testing and validating deep learning algorithms using techniques like model checking, symbolic execution and machine learning. We are building tools related to these aspects. For Android system, we have been working on security analysis on App malware detection & classification, generation and data analytic, App vulnerability analysis, App testing, Android OS testing and fuzzing, and Automatic UI generation.

For multi-agent systems, we are working on the topics related to formal modeling of various multi-agent systems, particularly trust management systems and their analysis in correctness, security and robustness.

For big data, we are promoting the concept called event analytic based on behavior learning and analysis, and their applications in sports and finance systems.
Current Projects
  • 2019 University Leadership Forum Chair in Computer Science and Engineering (Liu Yang)
  • AI for SW Engineering
  • Automatic Checking and Verification of Security Protocol Implementations
  • BINSEC: Binary Analysis for Security
  • Cloud-based Mobile App Testing Service
  • Distributed Plant Modeling, fault Diagnosis, And Supervisor Control Of Large Scale Automated Maunfacturin Systems
  • Enhancing Cyber Resilience of Deep Learning Models against Adversarial Cyber Attacks
  • Formal Modeling and Analysis of Collaborative Security
  • Improving Cybersecurity through Optimal Policy Design and Human Behaviour Modelling
  • Mobile (iOS) Security Study for Cyber-Attack Prevention
  • National Satellite of Excellence in Trustworthy Software Systems
  • Pillar 2-AI Programme (HP)
  • Pillar 2-AI Programme (IAF-ICP)
  • Pillar 2-AI Programme (NTU)
  • Pillar 3-Cybersecurity Programme (HP)
  • Pillar 3-Cybersecurity Programme (IAF-ICP)
  • Pillar 3-Cybersecurity Programme (NTU)
  • Productive Failure via Educational Games for Tertiary Education
  • Robust Control of Large Scale Concurrent Systems with Unreliable Resources
  • Robust Deep Learning Using Symbolic Abstractions
  • Scalable Malware and Vulnerability Analysis Using Program Metrics
  • Security Enhancements For ATM And POS Systems
  • Smart Binary-level Vulnerability Assessment for Cyber-attack Prevention
  • Software Vulnerability Discovery Tool Building
  • Vulnerability Detection in Binary Code
Selected Publications
  • Haijun Wang, Yi Li, Shang-Wei Lin, Lei Ma, Yang Liu. (2019). VULTRON: Catching Vulnerable Smart Contracts Once and for All. 41st ACM/IEEE International Conference on Software Engineering.
  • XiaofeiXie, Xiaohong Li, Xiang Chen, Guozhu Meng and Yang Liu. (2019). Branch Coverage Guided Hybrid Testing Based on Symbolic Execution and Fuzzing. Journal of Software, China Academic Journals , .
  • Zhushou Tang, Minhui Xue, Guozhu Meng, Chengguo Ying, Yugeng Liu, Jianan He, Haojin Zhu and Yang Liu. (2019). Securing Android Applications via Edge Assistant Third-party Library Detection. Computers and Security, 80, 257-272.
  • Zhou Y, Hu H, Liu Y, Lin SW, Ding Z. (2018). A distributed approach to robust control of multi-robot systems. Automatica, 98, 1-13.
  • Guozhu Meng, Matthew Patrick, Yinxing Xue, Yang Liu, and Jie Zhang. (2018). Securing Android App Markets via Modelling and Predicting Malware Spread between Markets. IEEE Transactions on Information Forensics and Security, .

« Back to Category Write-up