Academic Profile

Academic Profile

Asst Prof Guillaume Thibault

Nanyang Assistant Professor (NTU)


School of Biological Sciences
College of Science

Email: THIBAULT@NTU.EDU.SG
Phone: (+65)65921787
Office: SBS-03n-27

Education
  • PhD (Biochemistry) University of Toronto 2008
  • BSc (Biochemistry) Universite du Quebec a Montreal 2002
Biography
Guillaume Thibault obtained his Bachelor of Science in Biochemistry from the Université du Québec à Montréal (UQAM) in 2002. He pursued his graduate studies at the University of Toronto later that year and joined Professor Walid Houry’s laboratory after becoming interested in characterising the role of molecular chaperones in the context of cellular stress. To pursue his training in research, in 2008, he moved to the laboratory of Professor Davis Ng at Temasek Life Sciences Laboratory in Singapore. During his postdoctoral training, he established a model system to study the global effects of lipid imbalance in eukaryote. He also became interested in the cellular responses in the context of metabolic diseases.
Research Interests
LIPID REGULATION IN EUKARYOTES

Hundreds of distinct lipids, of varying concentrations, assemble to form biological membranes. The most abundant, phospholipids, varies according to head group structures, acyl chain length and double bounds. In eukaryotes, lipid compositions can differ widely among organelles. In most cases, the biological significance of these differences remains unclear

The complex organization of cellular membranes suggests the need of sophisticated homeostatic regulatory mechanisms. Links were made with an endoplasmic reticulum (ER) stress pathway called the unfolded protein response (UPR). The UPR activation is required to ease the damaging effects of ER stress. Yeast relies exclusively on the Ire1p pathway while metazoans have two additional UPR outputs. This characteristic makes budding yeast a very attractive model organism since its sole UPR pathway can be easily manipulated. Normally, this response leads to ER homeostasis by facilitating refolding of proteins and enhancing recognition and degradation of misfolded proteins. Meant to be temporary, the UPR must be deactivated to avoid cell death due to chronic ER stress. Many diseases, such as Alzheimer, Parkinson, diabetes mellitus type 2, and hepatic steatosis, have been linked to recurrent ER stress.
Current Projects
  • Catalytic Synthesis And Metalbolism Of Site-Specific Deuterated Essential Fatty Acids
  • Catalytic synthesis and metabolism of site-specific deuterated essential fatty acids
  • Elucidating exosomes biogenesis and uptake in cancer progression
  • From Dietary Excess to Neurodegeneration: Finding the Missing Links in Vesicular Autophagic Transport, Degradation, and Stress
  • LKCMedicine Internal Grant 25
  • Lipid Regulation And Cell Stress
Selected Publications
  • N. Ho, C. Xu, G. Thibault. (2018). From the unfolded protein response to metabolic diseases - lipids under the spotlight. Journal of Cell Science, 8(3).
  • B.S.H Ng, P.T. Jr Shyu, R. Chaw, Y.L. Seah, G. Thibault. (2017). Lipid perturbation compromises UPR-mediated ER homeostasis as a result of premature degradation of membrane proteins. bioRxiv, .
  • H. Wu, B.S.H. Ng, G. Thibault. (2014). Endoplasmic Reticulum Stress Response in Yeast and Humans. Bioscience Reports, .
  • C. Xu, S. Wang, G. Thibault , D.T. Ng. (2013). Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science, 340(6135), 978.
  • G. Thibault. D.T.W. Ng.(2013). Heat/Stress Responses. Encyclopedia of Biological Chemistry(522-525). Encyclopedia of Biological Chemistry.

« Back to Research Directory

​​​​​​​​