Academic Profile

Academic Profile

Assoc Prof Rainer Helmut Dumke

Associate Professor, School of Physical & Mathematical Sciences - Division of Physics & Applied Physics
Principal Investigator, Others - Please update the Remarks field

Assoc Prof Rainer Helmut Dumke

Rainer Dumke studied Physics at the Leibniz University in Hanover / Germany and received his Dr. rer. nat. (PhD) in 2003. The title of the theses was Atom Optic and Quantum Information Processing With Micro Structured Optical Elements. During his PhD he worked for half a year at the National Institute for Standard and Technologies (NIST, Gaithersburg USA) on ultra cold Rydberg atoms. After finishing his PhD in Hanover he received a prestige Fellowship from the Alexander von Humboldt foundation. In 2003 he went again to NIST (Gaithersburg, USA) to continue research in the same group in the field of ultra cold molecules and quantum degenerate gases. After two years in September 2005 Rainer Dumke started a new research position at the Max Planck Research Group in Erlangen, Germany. Here he focused on the realization of an optical atomic clock based on an ultra cold trapped single Indium ion. In September 2006 he came to Singapore and worked in the new established School of Physical and Mathematical Sciences in the Division of Physics and Applied Physics at the Nanyang Technological University. During his carresr his achievements included: Analysis of wave packets in an optical lattice. Investigating the formation of Rydberg atoms in an ultra cold plasma. First generation and application of an optical micro structure for a guided atom interferometer. First demonstration of the application of micro optical systems for quantum information processing. Studying the coherence properties of guided-atom interferometers. Sub-natural-linewidth quantum interference features: Atom-Molecule Coherence. All optical generation and photoassociative probing of sodium Bose-Einstein condensates. Development towards an optical frequency standard in the deep UV. His achievements are well documented in numerous publications.
Research Interests
The investigation and utilization of wave properties of atomic matter is of great interest in fundamental as well as in applied physics. Due to the recent progress in the control of ultra cold atomic matter, there is now a major effort to develop compact and fully integrated Atom-Chip devices. These systems will be suitable for a broad spectrum of applications ranging from Bose-Einstein condensation, atom interferometry, quantum information processing to high precision measurements.
Current Projects
  • A novel trapping technique for trapping large nanoparticle coated bubbles
  • Comparative Approach in the Development of Superconducting Atomchips
  • Game Engines, 360° Camera, and Head-Mounted-Displays in Science Classes
  • High Precision Measurements and Spectroscopy
  • Hybrid Quantum Systems in the Ultra Strong Coupling Regime
  • Hybrid Quantum Technologies
  • Joint approach to ultra selective and ultra sensitive real-time molecule trace detection
  • NAP Grant (Seed Funding)
  • NAP Grant (Seed Funding)
  • New Quantifiers of Correlations and their Experimental Implications
  • Precision Atomic Quantum Sensors
  • Quantum Foundry
  • Quantum Hub
  • Quantum Information Processing with Neutral Atoms in Advanced Nano Optical Chip Structures
  • Research on Atomic Interferometer
  • The Next Generation of Atom Optical Chips Based on Nano-Optical Devices
  • Towards Quantum Biology with Insects: Magneto-Sensitivity of American Cockroach
  • Virtual Rooms for Teaching Sciences
Selected Publications
  • Muller T (Mueller, T.)1,2, Wu X (Wu, X.)1, Mohan A (Mohan, A.)1, Eyvazov A (Eyvazov, A.)1, Wu Y (Wu, Y.)1, Dumke R (Dumke, R.)1. (2008). Towards A Guided Atom Interferometer Based on a Superconducting Atom Chip. New Journal of Physics, 10(073006).

« Back to Category Write-up