Research Categories


This category covers:

  • Multiferroics
  • Nanoscale Spintronics
  • Spintronics and Magnetism
  • Spintronics and Nanomaterials

Related Links:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences
Institute of Advanced Studies

NameResearch Interests
Assoc Prof Christopher ShearwoodAssoc Prof Christopher Shearwood main research focus are in the area of MEMS, BIOMEMS, sensors and actuators although he has also accumulated experience in transdermal drug delivery, spintronics, thin film magnetism, x-ray topography, electron and ion beam lithography, shape memory alloys, and nano-metals. He has published over 40 top quality international journal papers, as well as numerous conference papers, book chapters, and patents.
Assoc Prof Dong ZhiliDr. Dong has more than twenty years experience in transmission electron microscopy and X-ray diffraction of materials. His research interests include open-framework materials, nanostructured functional materials, advanced coatings and materials synthesis.
Assoc Prof Fan WeijunHis research interests include semiconductor band structure calculations by using effective mass theory, the first-principles method and empirical pseudopotential method (EPM); Compound semiconductor material growth, characterizations and device fabrications; Si photonics; Spintronics.
Assoc Prof (Adj) Goh Kia Liang GregoryProf. Goh's expertise is in hdyrothermal synthesis, film and nanostructure growth a epitaxy. His current research interests include: * Growth of TiO2 films for spintronic and photocatalytic applications * Hydrothermal synthesis of lead-free piezoelectrics * Inorganic photovoltaic materials * Low temperature solution epitaxy of ZnO films and nanostructures
Prof Huan Cheng Hon, AlfredAlfred Huan's research interests lie primarily in surface science and spectroscopy. He has published over 180 papers in international refereed journals and 1 book chapter, with a current H-index of 19 and citation rate of 7.92. He has been the PI of several research grants awarded by Ministry of Education and A*STAR, with total exceeding S$4 million. He serves on the editorial board of a new journal (Research Letters in Physics), and is a member of the Programme Committees for the ICMAT and VASSCAA conference series
Dr Koh Teck SengQuantum Information and Computation In the field of quantum information and computation, some of the quantum computer architectures that I am interested to study include semiconductor quantum dots and hybrid photonic-solid state systems. Such systems hold the promise of scalability due to their small (~100 nm) dimensions as well as the integrability with current microelectronics technologies. Some of the theoretical goals are to understand the performance of various quantum control and entanglement schemes, how decoherence properties and qubit interactions scale with increasing number and connectivity of qubits, and the investigation of novel quantum algorithms. With the scaling up of qubits into a quantum network, it therefore becomes important to understand the behaviour of networks and their properties, and how they perform in applications such as quantum key distribution and quantum state transfer, as well as with novel quantum algorithms. For example, the recently proposed quantum version of Google’s PageRank algorithm was found to outperform the classical version. Nanoscale Device Physics In studying how a quantum computer may be realised in solid state architectures, it is natural to study the Physics of nanoscale devices. In this field, beside quantum computing devices, I am interested in spintronics and valleytronics device Physics. In such investigations, it is important to understand the properties of the host material and the architecture of the device. For example, in silicon and graphene that such single electron quantum dot devices may be fabricated in, valley states may play an important role in the device Physics. I am interested to study how valley and spin degrees of freedom may be harnessed to store, manipulate and readout a bit of information. Foundational Issues in Quantum Mechanics I am interested in understanding foundational issues in Quantum Mechanics. Is the quantum state description a mere mathematical tool? Does a pure quantum state correspond directly to reality or only some information about a certain aspect of reality, that upon measurement is revealed to us? In the ontological vs epistemological debate over the nature of quantum reality, can we deduce no-go theorems that allow experimenters to test and resolve the issue?
Assoc Prof Lew Wen SiangDr Lew's areas of expertise are spintronic devices, nanoscale magnetism, and bio magnetic sensors.
Asst Prof Liew Chi Hin TimothySpin Dynamics of Excitonic Systems : Excitons are bound hydrogen-like states of electrons and holes, typically appearing in semiconductor quantum wells. Their electric dipole moment allows them to couple to light, particularly in semiconductor microcavities, and if this coupling is strong enough it can lead to hybrid states of excitons and light known as exciton-polaritons. Being hybrid states, exciton-polaritons inherit a mix of electronic and optical properties, including strong nonlinearities, sensitivity to electric/magnetic fields, long coherence times, fast picosecond scale dynamics. Theoretically, excitons and exciton-polaritons are also interesting for their rich spin dynamics, which gives rise to the optical spin Hall effect, spin-to-orbital angular momentum conversion; and spinor vortex dynamics. Optical Circuits : The nonlinearity of exciton-polaritons implies their application as optical circuit elements. While exciton-polariton systems are highly lossy, they admit a mechanism of signal propagation that mimics the signal propagation of biological neurons where losses are fully compensated by amplification. Recently a complete theoretical framework of polariton based circuits has been developed , accounting fully for disorder and finite lifetime. Mechanisms of hybrid electro-optic circuits can be based on incoherently excited polariton transistors or alternative mechanisms of bistability. Quantum Optics in Weakly Nonlinear Systems : To generate quantum effects from an optical system one typically requires nonlinearity stronger than the system decay rate. For example, the well known photon blockade effect requires the interaction energy between two photons to exceed the linewidth. Unfortunately, most photonic systems (e.g., microcavities or photonic crystals) have short photon lifetimes. Recent research moves to circumvent this problem by making use of quantum interferences or mechanisms of amplifying a weak nonlinearity. Bosonic Quantum Cascade Lasers : A variety of semiconductor nanophotonic systems have been considered for the emission of terahertz radiation, where one typically aims to convert an optical photon into a terahertz photon. While terahertz sources have several practical applications, this process is highly inefficient as the terahertz photon carries only a small fraction of the initial energy. To overcome this problem, the concept of a bosonic quantum cascade laser has been introduced , making use of multiple terahertz emitting transitions in an exciton trap. Unlike fermionic quantum cascade lasers, the efficiency is greatly increased by bosonic final state stimulation (achieving quantum efficiency above unity) while the system size is on the micron scale. Topological Photonic/Exciton Systems : The field of topology has proven how macroscopic properties of physical systems can result in exotic features at the boundaries between topologically distinct materials. Following earlier ideas from electronic topological insulators and photonics, the theory of topological polaritons and topological indirect excitons was recently introduce. In these systems, density currents propagating in chiral edge states are protected from scattering with disorder, which is a clear advantage for exciton based optical circuits. Optical Neural Networks : Neural networks exploit massive interconnectivity to become highly efficient at certain tasks, such as classification, and pattern recognition. While biological neurons may operate individually on millisecond time scales, their simultaneous connection to several thousands of other neurons allows a parallelization of tasks far beyond the capabilities of complementary metal-oxide-semiconductor logic. Naturally, this observation has motivated research into optical neural networks. Open Positions: PhD and Postdoc Positions are available (
Assoc Prof Raju Vijayaraghavan RamanujanNanomaterials are the focus of research work in Ramanujan?s group, especially magnetic and thermoelectric nanomaterials for energy, bioengineering, information storage and defense applications. Processing, characterization and property measurements are carried out in his group (presently 8 graduate students and 3 Research Fellows). Recent PhD theses include: Characterization and processing of cobalt based magnetic nanomaterials (Li Huafang),Microstructural evolution and processing of melt spun and mechanically alloyed Fe-Ni-B-Mo nanomagnetic materials (Du Siwei), Alloying effects on nanostructure formation in iron based soft magnetic materials (Yanrong Zhang) and Directed self assembly of patterned magnetic nanostructures (A. Srivastava). A strong emphasis is placed on electron microscopy and phase transformations are used as an important tool to tailor the microstructure. A bioengineering project, in collaboration with SingHealth, aims to develop magnetic nanoparticles for human liver cancer treatment. Synthesis of magnetic nanoparticles, coating these particles with a suitable polymer and cancer drug, followed by in-vitro and in-vivo testing of the coated particles is being carried out. MRI imaging is being used as an investigative tool in this work. Microelectronic reliability issues, e.g., stress-induced diffusive voiding in microelectronic materials are being studied. Magnetocaloric materials for energy applications, patterned nanostructures for ultra high density data storage media, giant energy product exchange coupled magnetic nanomaterials and nanomaterials for artificial muscles, targeted drug delivery and gene delivery are topics of ongoing research.
Assoc Prof S. N. PiramanayagamThe research interests of A/Prof S.N. Piramanayagam lies in the interdisciplinary areas of condensed matter physics, materials science and electronics. In particular, his research aims to solve problems related to magnetism and electronics and to provide technological solutions. His research interests can be divided into the the following sub-categories: • Magnetic Nanostructures • Magnetic Recording • Magnetics for Energy • Magnonics • Nano-imprint/Self-assembly Lithography • Spintronics Materials Students who wish to work in his group can contact him at