Research Categories


NameResearch Interests
Asst Prof Abhisek UkilDr. Ukil's research interest is in the field of - Power Systems: Protection, Bulk Power Transmission (HVAC, HVDC, overhead/underground), Distribution Automation (MV & LV), DC Grid, Renewable Energy & Integration, Microgrid, Energy Efficiency, Control, Hardware-in-loop testing, - Condition Monitoring & Diagnostics: Rotating Machine, Transformer, Cables, Circuit-Breaker, Relay/DFR, Surge Arrester, - Signal Processing, Machine Learning, Sensor-based Embedded Systems and applications.
Asst Prof Alessandro RomagnoliAlessandro's research interests are: - Waste heat recovery (Thermo-electric generation, Boosting technology and turbocharging, Organic ranking cycles) - Battery thermal management - Thermal energy storage - Propulsion for UAVs
Assoc Prof Alfred Tok Iing Yoong1) Carbon-based Field-Effect Transistor Sensors The biosensors market, which is currently at USD 9.9 billion, is expected to reach USD 18.9 billion in 2019 (GIA Report, 2014) propelled by the growing population and health issues. Our group capitalizes on this emergent market and researches on disposable and low-cost sensor suitable for real-time sensing in field conditions. Our group focuses on sensors for biological and gas detection applications. 2) Synthesis of Nanostructured Materials using Atomic Layer Deposition (ALD) Atomic layer deposition (ALD) has evolved to be a unique tool for nanotechnology with atomic level control of the depositions, 3D conformity and homogeneity. Film depositions can be realized for complex non-planar topographies for a wide range of applications such as energy conversion and storage, nanoparticle catalysts, nanostructures for drug delivery, gas separations, sensing, and photonic applications. Our group focuses on ALD materials for solar cell, hydrogen generation and smart window applications. 3) Hard & Tough Materials for Ballistic Protection Application The next generation of military vehicular and soldier system requires light-weight materials with high strength-to-weight ratio. Our research focuses on the synthesis and densification of nanostructured materials & desired composite architecture to significantly raise the ballistic protection capability. The B-C-N-O group of compounds are potential candidates to form novel materials for ballistic protection application as they inherent the unique properties from both boron nitride and boron carbide which are known for their light weight, high hardness, low friction coefficient and high wear resistance. Prof Tok leads a team of collaborators in armour material research ranging from high temperature synthesis of novel superhard materials and consolidation by state-of-the-art Spark Plasma Sintering to advanced characterisation techniques such as depth of penetration test using Two-Stage Light-Gas Gun. 4) Institute for Sports Research Our group is involved in the Institute for Sports Research, working on the damping property of midsoles which is based on carbon nanotube (CNT). CNT’s high aspect ratios (length/diameter) is particularly desirable for mechanical reinforcement, and it is found that the vertical aligned (VA)CNTs perform well in damping, to dissipate the energy absorbed under compression (Figure 7). Our present job is to tune the damping property of VACNT by adjusting the length, diameter and area density etc. parameters and try to reinforce the polymer with VACNT to fabricate midsole material with better cushion property. 5) NRF-CREATE In accordance with the objectives of the Energy Thrust Program of the NRF-CREATE Project, our group is focused on the design and synthesis of highly functional nanomaterials, which enables energy harvesting and conservation. Recently, novel graphene oxide synthesized nanoballs and nanoflowers were synthesized. These exhibit potentials for supercapacitors and energy applications. In general, these activities results in above 50 publications, 17 patent applications and projects discussions with companies regarding commercialization possibilities.
Assoc Prof Ali Iftekhar MaswoodDesign and Evaluation of a New Converter Control Strategy for Near Shore Tidal Turbines Five-Level Multiple-Pole PWM AC-AC Converters with Reduced Components Count Novel Converter topology for hybrid Wind & Solar Energy Maximum Power Tracking Control Strategies using Fuzzy logic and Particle Swram Optimization Novel DC-DC buck-boost Converter for solar/Fuel Cell optimal power txtraction
Asst Prof Ana Cristina Dias AlvesHer research interest lies broadly on South-South relations, particularly China’s relations with developing regions in the southern hemisphere. Over the past decade her research has focused on China’s economic cooperation with Africa, particularly its engagement in extractive industries on the continent. Her research interests also encompass comparative studies, namely regarding China’s engagement in different regions (Africa-South America and Southeast Asia), and comparing China’s approach with that of other emerging powers in the southern hemisphere.
Assoc Prof Ang Diing Shenp1. Reliability physics and characterization of nanoscale transistors (negative-bias temperature instability, hot-carrier effects, gate oxide breakdown, low frequency/RF noise, metal gate/high-kappa gate stack, non-volatile memories, silicon-on-insulator transistors, nanowire devices etc.) 2. Nano-characterization techniques (conductive atomic force microscopy, high-resolution transmission electron microscopy and associated anaytical techniques for alternative gate dielectrics, nanowire devices etc.) 3. Characterization of novel devices (e.g. tunneling FETs, novel memories etc.)
Asst Prof Anutosh Chakraborty(1) Adsorption Thermodynamics. (2) Adsorption/Absorption refrigeration/Heat Pump Systems and Desalination (3) Adsorption Gas (Methane/Hydrogen) Storage, Surface science. (4) Pool boiling at sub-atmospheric pressure, Flow boiling, Condensation. (5) Micro/Nano-Scale Transport Phenomena. (6) Bulk and Nanostructured thermoelectric device and their simulation tools.
Asst Prof Aravind Babu DasariDr Dasari’s major research emphasis is on the development of in-depth understanding of the various facets of processing-structure-property relations in hybrid polymer nanocomposites to achieve synergistic properties for different end applications. These facets include: 1. Thermal stability and flame retardancy (with eco-benign agents) 2. Functional properties (electrical/thermal conductivities, biodegradability and UV shielding) 3. Electrospinning techniques 4. Wear/scratch damage at different scales (macro/micro/nano) 5. Deformation and Fracture mechanisms 6. Active food packaging
Assoc Prof Atsushi GotoPolymer Chemistry and Polymer Materials 1) Controlled syntheses of polymers 2) Development of new living radical polymerization via organic catalysis 3) Creation of new advance polymer materials using structurally controlled polymers
Prof B.V.R. ChowdariDevelopment of electrode and electrolyte materials for energy storage applications including Lithium Ion Batteries.